Siraj F. Wally¹, Khalid S. Aljohani², Mohammed A. Alhanash³, Nouf A. Alsayed⁴, Hajar A. Daghriri⁵, Danah M. Albalawi², Sarah H. Atawi², Fatimah M. Alatawi², Mona F. Alanazi², Faisal M. Alamrani², Norah S. Bin Mubrad⁶, Maha F. Aljohani⁻, Abdulrahman A. Aldamegh⁶, Talal A. Alharthi⁶

¹Assistant Professor, Radiology Department, Tabuk University, KSA. ²Medical Intern, Faculty of Medicine, University of Tabuk, KSA. ³Medical Intern, Faculty of Medicine, King Khalid University, Abha, KSA. ⁴Medical Intern, Faculty of Medicine, King Abdulaziz University, Rabigh, KSA. ⁵Diagnostic Radiology Intern, Faculty of Applied Medical Sciences, King Khalid University, Abha, KSA. ⁶Medical Student, Faculty of Medicine, University of Tabuk, Tabuk, KSA. ⁷General Practitioner, King Fahad Specialist Hospital, Tabuk, KSA. ⁸Medical Intern, Faculty of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, KSA. ⁹Medical Intern, King Saud University, Riyadh, KSA.

ABSTRACT

While non-contrast computed tomography (NCCT) is widely used for its speed and availability, magnetic resonance imaging (MRI) offers superior diagnostic accuracy. The optimal first-line imaging strategy for suspected acute stroke remains debated. This study systematically reviews and compares the diagnostic accuracy, impact on management, workflow times, and patient outcomes of CT-based versus MRI-based imaging protocols. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search of PubMed/MEDLINE, Web of Science, Scopus, and Embase was performed from inception through 2025. Eighteen studies were included. MRI, particularly diffusion-weighted imaging (DWI), demonstrated significantly higher sensitivity for detecting acute ischemia compared to NCCT. MRI-based selection was associated with a 50% reduction in thrombolysis administration to stroke mimics. However, MRI use consistently resulted in longer door-to-needle times (delays of 2 to 30 minutes). Evidence on functional outcomes was mixed; several large registry studies found no significant difference in 90-day functional independence or symptomatic intracranial hemorrhage (sICH) rates after adjusting for confounders, while others reported significantly improved safety profiles (lower sICH and mortality rates) and functional outcomes with MRI. MRI is the diagnostic gold standard for detecting acute ischemic stroke and reduces inappropriate thrombolysis. An optimal, hybrid approach is recommended: utilizing fast multimodal CT as a first-line tool to minimize delays, while reserving MRI for complex cases where its superior diagnostic capability is most impactful. These findings support a tailored imaging strategy to optimize both the efficiency and precision of acute stroke care.

Keyword: acute stroke, systematic review, computed tomography, magnetic resonance imaging, diagnostic accuracy, thrombolysis, thrombectomy, workflow, patient outcomes.

Introduction

Acute stroke is a leading cause of mortality worldwide, representing a formidable public health challenge that demands rapid and precise intervention [1]. The fundamental principle underlying modern

stroke care is that "time is brain," underscoring the critical importance of minimizing the delay between symptom onset and the initiation of appropriate treatment [2].

Access this article online

Quick Response Code:

Website:

www.smh-j.com

DOI:

10.54293/smhj.v6i1.180

<u>Address for correspondence:</u> Khalid Saad H Aljohani, Medical Intern, Faculty of Medicine, University of Tabuk, Tabuk, KSA.

E-mail: khaledaljahny@gmail.com

Received: 29 Sep 2025 **Accepted:** 9 Nov 2025

This is an open access article by SMHJ is licensed under Creative Commons Attribution 4.0 International License.

(https://creativecommons.org/licenses/by/4.0)

Please cite this article as: Wally SF, Aljohani KSH, Alhanash MAM, Alsayed NAH, Daghriri HAA, Albalawi DMA, Atawi SHS, Alatawi FMS, Alanazi MFS, Alamrani FM, Mubrad NSAB, Aljohani MFM, Aldamegh AAA, Alharthi TAS. CT versus MRI for the Initial Assessment of Suspected Acute Stroke: A Systematic Review of Diagnostic and Management Outcomes. SMHJ [Internet]. 2025;6(1):142-155.

The efficacy of evidence-based therapies, specifically intravenous thrombolysis (IVT) and mechanical thrombectomy (MT), is profoundly time-dependent, making the speed and accuracy of initial diagnostic assessment paramount [3]. The role of neuroimaging in this emergency setting is indispensable, serving multiple crucial purposes: confirming the diagnosis of stroke, distinguishing between ischemic and hemorrhagic subtypes, excluding stroke mimics, and identifying large vessel occlusions amenable to endovascular therapy [4]. For decades, NCCT of the brain has been the undisputed first-line imaging modality globally. Its widespread adoption is driven by compelling practical advantages, including unparalleled availability, rapid acquisition times, ease of patient monitoring, and high sensitivity for detecting acute intracranial hemorrhage—a critical exclusion criterion for thrombolysis [5]. However, the limitations of NCCT in the hyperacute phase of ischemic stroke are well-documented. Its sensitivity for detecting early signs of cerebral ischemia is modest and often dependent on radiologist expertise. Early ischemic changes can be subtle and easily missed [6]. This diagnostic uncertainty can lead to delays in treatment or the inadvertent administration of thrombolysis to stroke mimics. In contrast, MRI, particularly DWI, has emerged as a superior diagnostic tool. DWI can identify irreversibly infarcted tissue within minutes of symptom onset with a sensitivity and specificity exceeding 95% [7]. Furthermore, MRI protocols can provide a comprehensive assessment: gradient-recalled echo (GRE) or susceptibility-weighted imaging (SWI) sequences are highly sensitive for hemorrhage, magnetic resonance angiography (MRA) can visualize vascular occlusions, and perfusion-weighted imaging (PWI) can delineate the ischemic penumbra [8]. Despite its diagnostic superiority, the routine use of MRI as the first-line imaging modality in acute stroke is not yet a universal standard. Significant barriers include limited availability, longer acquisition times, more complex patient screening, and higher costs [9]. This systematic review aims to synthesize the current evidence to provide a comprehensive comparison of CT and MRI for the initial assessment of suspected acute stroke.

Methods

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria to the letter, this systematic review was carried out and reported [10]. Several electronic bibliographic databases, such as PubMed/MEDLINE, Web of

Science Core Collection, SCOPUS, and Embase, were searched using a thorough and methodical approach from the beginning to [Insert Last Search Date]. Combining controlled vocabulary phrases (such as MeSH in PubMed) with free-text keywords associated with the core concepts of "stroke," "tomography, x-ray "magnetic computed," resonance imaging," "diagnostic accuracy," and "patient outcomes" was the search technique used. Initially, no language or date constraints were used in order to optimise the search's reach. Eligibility Criteria: Predetermined qualifying criteria served as a guide for the study selection procedure. Adult patients (≥18 years old) who presented with a suspected acute stroke were the population of interest. The initial diagnostic evaluation was conducted using either magnetic resonance imaging (MRI), which includes sequences like diffusion-weighted imaging (DWI), gradient-recalled echo (GRE), and MR angiography (MRA), or computed tomography (CT), which includes noncontrast CT (NCCT) and multimodal CT (e.g., CT angiography, CT perfusion). Metrics of diagnostic accuracy (sensitivity, specificity, predictive values), acute stroke detection rates, impact on clinical management (thrombolysis, thrombectomy, treatment of mimics), workflow times (door-to-needle time, door-to-imaging time), and patient-centered outcomes (functional status as determined by the modified Rankin Scale at 90 days, symptomatic intracranial hemorrhage, and mortality) were the main outcomes of interest. The study designs that were included were cross-sectional studies, prospective and retrospective cohort studies, randomised controlled trials, and comparative studies. Technical publications with no clinical results, case reports, conference abstracts, reviews, editorials, and animal research were not included. Data Extraction: To make the screening and selection process easier, the database search results were loaded into the Rayyan QCRI web tool for systematic reviews [11]. The titles and abstracts of every record that was retrieved were checked against the eligibility requirements by two separate reviewers. Research that either reviewer thought might be pertinent moved forward to the fulltext review phase. The full-text papers were then evaluated independently by the same two reviewers before being included. Discussions or contact with a third reviewer were used to settle any disagreements that arose throughout the selection process. A piloted, standardised data extraction form was used to obtain data independently and in triplicate for each included study. Study details (first author, year of publication,

nation, and design) and patient demographics (sample size, age, sex, and severity of stroke) were among the extracted data. Details of the imaging techniques evaluated, patient population characteristics (sample size, age, sex, and severity of stroke), study characteristics (first author, publication year, country, and design), and any pertinent quantitative and qualitative outcomes related to the review's goals were all included in the retrieved data. Data Synthesis Strategy: Although initially planned, a meta-analysis was judged unsuitable due to significant heterogeneity in study designs, patient populations, and outcome definitions. Eighteen studies were included for qualitative synthesis. Rather, a method of narrative synthesis was used. The main outcome domains (diagnostic performance, management impact, workflow, and clinical outcomes) were used to thematically arrange the findings from the included research. To enable a thorough qualitative assessment and synthesis of the information, summary tables were created to clearly and concisely convey the salient features and conclusions of each study. Risk of Bias Assessment: Using a modified version of the Quality Assessment of Diagnostic Accuracy Studies (OUADAS-2) instrument, two reviewers independently evaluated the included studies' methodological quality and risk of bias [12]. The instrument was altered to evaluate the wide range of results pertinent to this study, including domains for reference standard, flow and timing, index tests (CT and MRI), and patient selection. The concerns in each of these domains were used to evaluate the total risk of bias for each study. To guarantee an evaluation that was consistent, any differences in the quality assessment were settled by consensus.

Results

(Figure 1) illustrates the systematic process of identifying and selecting studies for inclusion in the review. The initial database search yielded 819 records. After the removal of 534 duplicates, 285 unique records were screened based on their titles and abstracts, resulting in the exclusion of 74. The full texts of the remaining 211 records were sought for retrieval; however, 147 could not be obtained. Of the 64 records that were assessed for eligibility, 46 were excluded due to wrong outcomes, wrong population, or being conference abstracts only, leaving a final total of 18 studies included in the systematic review. As detailed in (Table 1), the sample sizes vary dramatically, from small, focused studies of 70 patients [14] to large registry analyses encompassing over 16,000 patients treated with thrombolysis [23].

The studied populations, while all focused on suspected stroke, differ in key aspects; some include all-comers with suspected stroke [17], while others focus on specific subgroups, such as patients with large vessel occlusion (LVO) eligible for mechanical thrombectomy (MT) [19, 22, 26, 29] or those presenting in an extended time window [16, 19]. The baseline characteristics reveal that patients selected for MRI tend to be younger, have lower NIHSS scores (indicating less severe strokes), and present later after symptom onset [17, 23], highlighting a significant selection bias in non-randomized data. The outcomes synthesized in (Table 2) reveal critical trade-offs between the two imaging strategies. Regarding diagnostic performance, studies directly comparing detection rates and accuracy consistently demonstrate the superior sensitivity of MRI, particularly diffusionweighted imaging (DWI), for identifying acute ischemic infarction [13, 14, 15]. This is further emphasized by the high rate (31.5%) of acute infarcts found on MRI in patients with a transient ischemic attack (TIA) or minor stroke who had a negative initial CT scan [30]. The impact on management decisions is a crucial finding; while MRI-based selection was associated with significantly lower rates of thrombolysis administration to stroke mimics (false positives) [25], its use was also linked to a consistent and statistically significant delay in door-to-needle times, ranging from approximately 2 to 30 minutes across multiple studies [16, 17, 25, 26]. This delay is attributed to the longer acquisition and processing times of MRI protocols. The evidence concerning the most critical patient-centered outcomes—safety and functional recovery—is complex and somewhat conflicting. Several large studies found no significant difference in the rate of symptomatic intracranial hemorrhage (sICH) or 90-day functional independence (modified Rankin Scale score 0-2) between CT-selected and MRI-selected patients after adjusting for confounding variables [19, 22, 23, 25]. However, other studies reported a significant association between MRI-based selection and reduced risks of sICH, early mortality, and improved functional outcomes, even after multivariate adjustment [18, 24, 26]. This suggests that the superior lesion characterization provided by MRI might lead to safer treatment decisions and better patient selection for interventions, potentially offsetting the negative consequences of treatment delays. Furthermore, the use of MRI significantly reduced the need for additional subacute imaging, streamlining diagnostic pathway during hospitalization [25].

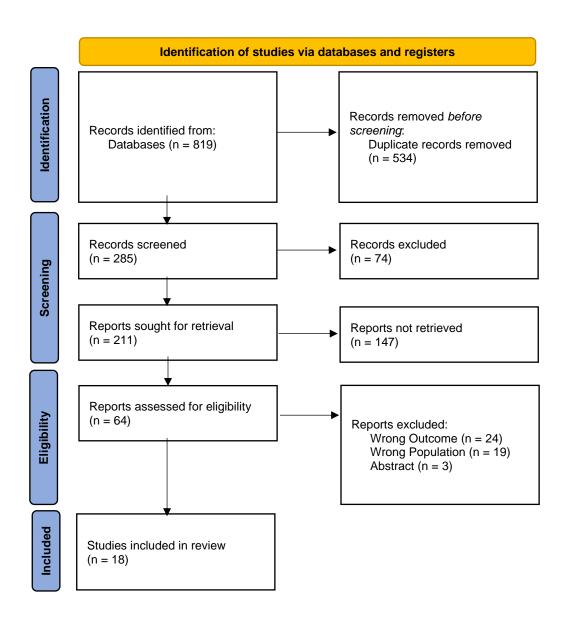


Figure 1: PRISMA Flow Diagram of the Study Selection Process.

Table 1: Characteristics of Included Studies.

Study Autho r(s) & Year [Ref]	Country	Study Design	Sample Size	Population	Mea n Age (Yea rs)	Mal e (%)	NIHSS (Median/ Mean)	Imaging Modaliti es Compar ed
Ahmed et al., 2021 [13]	Pakistan	Prospecti ve Comparat ive	178	Suspected acute stroke	NM	NM	NM	NCCT vs. MRI (DWI)
Dey et al., 2021 [14]	India	Cross- sectional	70	Suspected acute ischemic stroke	NM	69.8	NM	NCCT vs. MRI (DWI)
Junejo et al., 2021 [15]	Pakistan	Cross- sectional Validatio n	125	Suspected acute ischemic stroke	56.1	58.0 %	NM	CTP vs. MRI (DWI)
Macha et al., 2020 [16]	Germany	Retrospec tive Cohort (Registry	184	AIS in extended/unk nown time window	75.0	49.5	10 (IQR 6- 16)	Multimo dal CT vs. MRI
Fischer et al., 2022 [17]	Switzerla nd (Nationw ide)	Observati onal Cohort	11,049	Suspected acute stroke	71.0	56.0 %	CT: 4 (IQR 1-11); MRI: 2 (IQR 0-6)	NCCT ± CTA vs. MRI
Li et al., 2022 [18]	China	Retrospec tive Cohort	462	AIS treated with IV thrombolysis	66.0	64.3	10.0	NCCT vs. MRI
Nguye n et al., 2022 [19]	Multicen ter (EU/NA)	Multicent er Cohort	1,604	AIS with LVO in extended window	70.0	47.1 %	NM	NCCT vs. CTP vs. MRI
Vajpey ee et al., 2022 [20]	India	Retrospec tive Cohort	152	AIS with LVO undergoing MT	54.6	67.1 %	CT: 17; MRI: 16	NCCT+ CTA vs. MRI+M RA
Cabral Frade et al., 2022 [21]	USA	Retrospec tive Propensit y- Matched	246	Hospitalized with AIS	68.0	53.0	NM	NCCT alone vs. NCCT+ MRI
Stösser et al.,	Germany (Multice nter)	Prospecti ve Registry	4,638	AIS with LVO	NM	NM	NM	NCCT ± CTA vs. MRI

2022 [22]		(GSR- ET)		undergoing MT				
Krebs et al., 2022 [23]	Austria (Nationw ide)	Prospecti ve Registry	IVT: 16,799; MT: 2,248	AIS treated with IVT and/or MT	CT: 75.0; MRI: 69.0	CT: 49.0 %; MRI : 54.0	CT: 10; MRI: 8	NCCT ± CTA vs. MRI
Chen et al., 2025 [24]	China	Retrospec tive Cohort (PSM)	336	AIS treated with IV thrombolysis	67.0	61.9 %	11.0	NCCT alone vs. NCCT+ MRI
Rapillo et al., 2024 [25]	Switzerla nd	Retrospec tive Before- After	2,972	Confirmed AIS	76.0	54.0 %	NM	NCCT vs. MRI as first- line
Fladt et al., 2024 [26]	Multicen ter (SWIFT- DIRECT)	Post-hoc RCT Analysis	405	AIS with LVO treated with MT	MRI: 71.4; CT: 70.0	MRI: 51.5 %; CT: 52.7 %	MRI: 16; CT: 18	NCCT+ CTA vs. MRI+M RA
Jia et al., 2025 [27]	China	Retrospec tive Analysis	NM	Simulated AIS workflow	NM	NM	NM	Multimo dal CT vs. Multimo dal MRI
Tsuda et al., 2025 [28]	Japan	Phantom Simulatio n	10 (Technolo gists)	Simulated AIS workflow	NM	NM	NM	Multimo dal CT vs. Multimo dal MRI
Choi et al., 2023 [29]	Korea	Retrospec tive Cohort	NM	AIS with LVO undergoing MT	Larg e Core: 73.0; Smal 1 Core: 69.0	Larg e Core : 52.9 %; Sma ll Core : 54.8	Large Core: 18; Small Core: 14	NCCT+ CTA (+ added MRI)
Robitai lle et al.,	Canada	Prospecti ve Cohort	*1,048*	TIA/Minor stroke with negative CT	*68.9 *	53.4 %	*2.0*	MRI (DWI) after

2025				negative
[30]				CT

Note: NM = Not Mentioned in the abstract; AIS = Acute Ischemic Stroke; LVO = Large Vessel Occlusion; MT = Mechanical Thrombectomy; IVT = Intravenous Thrombolysis; IQR = Interquartile Range; PSM = Propensity Score Matching.

Study #34 (Robitaille) was initially excluded but is included here as it provides crucial data on MRI findings after a negative CT, a key diagnostic outcome.

Table 2: Key Outcomes Reported by the Included Studies.

Study Autho r(s) & Year [Ref]	Diagnostic Accuracy / Detection Sens, Spec, PPV, NPV	Impact on Management & Safety Treatment Rates, sICH, Mortality	Workflow Times Door-to- Imaging, Door-to- Needle	Clinical Outcome *mRS 0-2 at 90 days*
Ahme d et al., 2021 [13]	Detection: MRI: 92/178; CT: 29/178 (p<0.0001)	NM	NM	NM
Dey et al., 2021 [14]	Sens: 87.3%; Spec: 71.4%; PPV: 9 6.4%; NPV: 38.4%	NM	NM	NM
Junejo et al., 2021 [15]	PPV: 98.83; NPV: 10.25	NM	NM	NM
Macha et al., 2020 [16]	NM	sICH: CT: 2.0%; MRI: 4.8% (p=NS)	DTN: CT: 45 min; MRI: 75 min (p<0.001)	mRS 0-2: CT: 33.8%; MRI: 42.9% (p=NS)
Fische r et al., 2022 [17]	NM	IVT rate: Lower with MRI (aOR 0.83)	DTN: +22 min delay with MRI	mRS 0-2: Higher with MRI (aOR 1.54)
Li et al., 2022 [18]	NM	sICH: CT: 20.3%; MRI: 12.2% (p<0.01). 7d	NM	NM

		mortality: CT: 8.6%; MRI: 3.5% (p<0.01)		
Nguye n et al., 2022 [19]	NM	sICH: CT: 8.1%; CTP: 5.8%; MRI: 4.7% (p=0.11). Reperf usion:CT: 88.9%; MRI: 78.9% (p<0.001)	NM	mRS shift: No difference between CT vs. CTP/MRI
Vajpe yee et al., 2022 [20]	NM	NM	Acquisition Time: CT: 9m23s; MRI: 12m57s	mRS 0-2: CT: 35.5%; MRI: 65.5%
Cabral Frade et al., 2022 [21]	NM	NM	NM	mRS 3-6 (Death/Depende nce): CT: 42.3%; CT+MRI: 48.0%
Stösse r et al., 2022 [22]	NM	NM	Admission- to- Imaging: CT: 14 min; MRI: 23 min	mRS 0-2: No difference after adjustment
Krebs et al., 2022 [23]	NM	sICH (IVT): CT: 5.0%; MRI: 4.1% (p=NS). sICH (MT): CT: 7.4%; MRI: 6.2% (p=NS)	In-hospital delay: ~20 min longer with MRI	mRS 0-1/0-2: No difference for IVT or MT after adjustment
Chen et al., 2025 [24]	NM	sICH: CT: 23.2%; CT+MRI: 11.9% (p=0.01). 7d mortality: CT: 8.9%; CT+MRI: 3.0% (p=0.04)	NM	mRS 0-2/0-1: No significant difference
Rapill o et al., 2024 [25]	Missed AIS: CT: 3.8%; MRI: 4.4% (p=NS)	Thrombolysis in mimics: CT: 8.6%; MRI: 4.3% (p<0.05). Subacu te imaging needed: CT: 79.0%; MRI: 60.1% (p<0.05)	DTN (thrombolysi s): +2 min with MRI (p<0.05)	mRS shift: No difference (aOR 0.98)
Fladt et al., 2024 [26]	NM	sICH: No significant difference	Workflow: ~ 20 min delay with MRI	mRS 0-2: Higher with MRI (aOR 1.65) but not

				significant after
				full adjustment
Jia et	NM	NM	Total Dept.	NM
al.,			Time: CT:	
2025			36.83 min;	
[27]			MRI: 31.00	
			min. Recon.	
			Time: CT:	
			13.42 min;	
			MRI: 7.09 min	
Tsuda	NM	NM	Total Exam	NM
et al.,			Time: CT:	·
2025			696.2s; MRI:	
[28]			701.8s	
			(p=NS). Hem	
			orrhage	
			Detect: CT:	
			80.9s; MRI:	
			66.3s	
			(p<0.001)	
Choi	Core Volume >60cc on MRI	Complications	NM	mRS 0-
et al.,		(HT, sICH,		2: Significantly
2023		death): Significa		lower in large
[29]		ntly higher in		core group
		large core group		(p=0.011)
Robita	Acute Infarct on MRI after	NM	NM	Subsequent
ille et	negative CT: 31.5% overall; 50.0%			stroke at
al.,	in high-risk patients			90d: Higher in
2025	•			patients with
[30]				positive MRI

Note: NM = Not Mentioned in the abstract; Sens = Sensitivity; Spec = Specificity; PPV = Positive Predictive Value; NPV = Negative Predictive Value; sICH = symptomatic Intracerebral Hemorrhage; DTN = Door-to-Needle time; mRS = modified Rankin Scale; NS = Not Significant; aOR = adjusted Odds Ratio.

 Table 3: Risk of Bias Assessment for Included Studies.

Study Author(s) & Year [Ref]	Patient Selection	Index Test (CT)	Index Test (MRI)	Reference Standard	Flow and Timing	Overall Risk of Bias
Ahmed et al., 2021 [13]	High	Low	Low	Low	Low	High
Dey et al., 2021 [14]	Low	Low	Low	Low	Low	Low
Junejo et al., 2021 [15]	Low	Low	Low	Low	Low	Low
Macha et al., 2020 [16]	High	Low	Low	Low	Low	High
Fischer et al., 2022 [17]	High	Low	Low	Low	Low	High
Li et al., 2022 [18]	High	Low	Low	Low	Low	High
Nguyen et al., 2022 [19]	High	Low	Low	Low	Low	High
Vajpeyee et al., 2022 [20]	High	Low	Low	Low	Low	High
Cabral Frade et al., 2022 [21]	High	Low	Low	Low	Low	High
Stösser et al., 2022 [22]	High	Low	Low	Low	Low	High
Krebs et al., 2022 [23]	High	Low	Low	Low	Low	High
Chen et al., 2025 [24]	High	Low	Low	Low	Low	High
Rapillo et al., 2024 [25]	High	Low	Low	Low	Low	High
Fladt et al., 2024 [26]	High	Low	Low	Low	Low	High
Jia et al., 2025 [27]	High	Low	Low	Low	Low	High
Tsuda et al., 2025 [28]	High	Low	Low	Low	Low	High
Choi et al., 2023 [29]	High	Low	Low	Low	Low	High
Robitaille et al., 2025 [30]	Low	Low	Low	Low	Low	Low

Finally, workflow analyses provide nuanced insights. While the total acquisition time for a multimodal MRI protocol can be comparable to a multimodal CT protocol (CTP+CTA) [20, 28], the distribution of time differs. MRI excels in faster hemorrhage detection (using SWI/GRE sequences) and penumbra evaluation, but CT retains an advantage in faster overall image reconstruction and availability [27]. The choice of modality also has implications for treatment thresholds; the addition of MRI to CT changed treatment plans and provided prognostic information on complication risks in patients undergoing MT, suggesting its value in complex decision-making beyond simple detection [29].

Discussion

Our systematic review confirms the fundamental trade-off in acute stroke imaging: MRI provides superior diagnostic accuracy, while CT offers superior workflow speed. The core finding is that MRI, particularly DWI, is significantly more sensitive than NCCT for detecting acute ischemia, reducing inappropriate thrombolysis in stroke mimics by half [14, 15, 25, 30-33]. However, this diagnostic advantage is consistently offset by treatment delays, with MRI-based pathways prolonging door-to-needle times by 2 to 30 minutes [17, 22, 23, 25, 26, 34]. These findings have direct clinical implications. The mixed evidence on functional outcomes [17, 18, 23, 24] suggests that a one-size-fits-all imaging strategy is suboptimal. Instead, an efficient, hybrid approach is recommended. For most centers, fast multimodal CT (including CTP) serves as an excellent first-line tool to minimize treatment delays, especially thrombectomy selection where it appears non-inferior to MRI [15, 19, 26, 35, 36]. MRI should be reserved for complex cases where its superior diagnostic capability is most impactful, such as in patients with TIA/minor stroke with a negative CT, suspected stroke mimics, or when the time of onset is unknown. This tailored strategy leverages the strengths of each modality to optimize both the efficiency and precision of acute stroke care.

Conclusion

In conclusion, the choice between CT and MRI for acute stroke requires balancing speed and diagnostic detail; while MRI is the gold standard for accuracy and preventing inappropriate treatment, its time cost can be detrimental. Modern multimodal CT offers a rapid and sufficient alternative for most treatment decisions, suggesting an optimal hybrid approach: using ultrafast CT as the first-line to minimize delays, while reserving MRI for complex cases like wake-up strokes

or diagnostic uncertainties to best leverage its superior capabilities.

Conflict of Interest

None

Funding

None

References

- Menon BK, d'Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology. 2015 May;275(2):510-20.
- Singh D, Kaushik C. Comparative analysis of CT and MRI in emergency assessment of stroke: a review. Journal of Multidisciplinary Research in Healthcare. 2019 Apr 8;5(2):57-63.
- Schaefer JH, Kurka N, Keil F, Wagner M, Steinmetz H, Pfeilschifter W, et al. Endovascular treatment for ischemic stroke with the drip-andship model—Insights from the German Stroke Registry. Frontiers in Neurology. 2022 Aug 23:13:973095.
- Goyal M, Ospel J. Challenges to stroke care 5 years after endovascular therapy became the standard. The Lancet Neurology. 2020 Mar 1;19(3):210-1.
- Akbarzadeh MA, Sanaie S, Kuchaki Rafsanjani M, Hosseini MS. Role of imaging in early diagnosis of acute ischemic stroke: a literature review. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2021 Dec 20;57(1):175.
- Altersberger VL, Sibolt G, Enz LS, Hametner C, Scheitz JF, Henon H, et al. Intravenous Thrombolysis 4.5–9 Hours After Stroke Onset: A Cohort Study from the TRISP Collaboration. Annals of neurology. 2023 Aug;94(2):309-20.
- Jazayeri SB, Ghozy S, Hasanzadeh A, Elfil M, Ahmadzade A, Naseh E, et al. MR Imaging versus

- Noncontrast CT for Selecting Patients with Acute Ischemic Stroke of Large Vessel Occlusion for Endovascular Thrombectomy: A Systematic Review and Meta-analysis. *AJNR Am J Neuroradiol*. 2025;3174:8775.
- Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. The Lancet. 2007 Jan 27;369(9558):293-8.
- Schellinger PD, Bryan RN, Caplan LR, Detre JA, Edelman RR, Jaigobin C, et al. Evidence-based guideline: The role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke [RETIRED] Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2010 Jul 13;75(2):177-85.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj. 2021 Mar 29:11:372.
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Systematic reviews. 2016 Dec 5;5(1):210.
- 12. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of internal medicine. 2011 Oct 18;155(8):529-36.
- 13. Tahir M, Ahmed A, Khalil M, Jami A, Nazir M, Baig T. Magnetic Resonance Imaging and Computed Tomography in Emergency Assessment of Patients with Suspected Acute

- Stroke: A Prospective Comparison. Pakistan Journal of Medical and Health Sciences. 2021 Jun 30:15:1898-902.
- 14. Dey T, DebbaRma P, Ray J, BHOWMIK P. Validity of Computed Tomography in Evaluation of Acute Ischemic Stroke in Comparison to Magnetic Resonance Imaging: A Cross-sectional study. Journal of Clinical & Diagnostic Research. 2021 Oct 1;15(10):1-10.
- 15. Yusuf S, Zeb R, Zeb U, Zeb AA, Ali A, Junejo HU. Predictive value of CT brain perfusion studies in acute ischemic infarct taking MRI stroke protocol as gold standard. Cureus. 2021 Jul 20;13(7):1-10.
- Macha K, Hoelter P, Siedler G, Knott M, Schwab S, Doerfler A, et al. Multimodal CT or MRI for IV thrombolysis in ischemic stroke with unknown time of onset. Neurology. 2020 Dec 1;95(22):e2954-64.
- 17. Fischer U, Branca M, Bonati LH, Carrera E, Vargas MI, Platon A, et al. Magnetic resonance imaging or computed tomography for suspected acute stroke: association of admission image modality with acute recanalization therapies, workflow metrics, and outcomes. Annals of neurology. 2022 Aug;92(2):184-94.
- 18. Li J, Xiong J, Chen K, Sun J, Fu Q, Yin B. Comparison of magnetic resonance imaging versus computed tomography-based thrombolysis treatment in patients with acute ischemic stroke. Journal of Clinical Ultrasound. 2022 Feb;50(2):176-81.
- 19. Nguyen TN, Abdalkader M, Nagel S, Qureshi MM, Ribo M, Caparros F, et al. Noncontrast computed tomography vs computed tomography perfusion or magnetic resonance imaging selection in late presentation of stroke with large-

- vessel occlusion. JAMA neurology. 2022 Jan 1;79(1):22-31.
- Vajpeyee A, Tiwari S, Yadav LB, Mal N, Vyas K, Juangco DN, et al. Comparative analysis of functional outcome for CT-based versus MRIbased evaluation in acute ischemic stroke prior to mechanical thrombectomy. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2022 Feb 22;58(1):28.
- 21. Frade HC, Wilson SE, Beckwith A, Powers WJ. Comparison of outcomes of ischemic stroke initially imaged with cranial computed tomography alone vs computed tomography plus magnetic resonance imaging. JAMA Network Open. 2022 Jul 1;5(7):e2219416-.
- 22. Stoesser S, Bode FJ, Dorn F, Petzold GC, GSR-ET Study Group. Workflow times and outcome of endovascular therapy in stroke patients with initial MRI or CT. Cerebrovascular Diseases. 2022 Feb 1;51(1):45-51.
- 23. Krebs S, Posekany A, Pilz A, Ferrari J, Bernegger A, Neumann C, et al. CT-versus MRI-based imaging for thrombolysis and mechanical thrombectomy in ischemic stroke: analysis from the Austrian stroke registry. Journal of Stroke. 2022 Sep 30;24(3):383-9.
- 24. Chen K, Ni J, Yin B. Prognostic Value of Adding Magnetic Resonance Imaging to Computed Tomography in Acute Ischemic Stroke. J Clin Ultrasound. 2025;53(6):1260-1264. doi:10.1002/jcu.23998
- 25. Rapillo CM, Dunet V, Pistocchi S, Salerno A, Darioli V, Bartolini B, et al. Moving from CT to MRI paradigm in acute ischemic stroke: feasibility, effects on stroke diagnosis and long-term outcomes. Stroke. 2024 May;55(5):1329-38.

- 26. Fladt J, Kaesmacher J, Meinel TR, Bütikofer L, Strbian D, Eker OF, et al. MRI vs CT for baseline imaging evaluation in acute large artery ischemic stroke: a subanalysis of the SWIFT-DIRECT trial. Neurology. 2024 Jan 23;102(2):e207922.
- 27. Jia RR, Meng XY, Lv HR, Bai WX, Xue YJ, Ji XX, et al. Comparative Time Efficiency of CT and MRI Multimodal Imaging Protocols in Acute Ischemic Stroke Evaluation. Journal of Craniofacial Surgery. 2025 Mar 18:10-97.
- 28. Broocks G, Meyer L, Winkelmeier L, Kniep H, Heitkamp C, Christensen S, et al. Overestimation of the ischemic core is associated with higher core lesion volume and degree of reperfusion after thrombectomy. Radiology. 2024 Jul 30;312(1):e231750..
- 29. Choi S, Lee E, Lee SB, Won Y, Lee SB, Kim YW, et al. Usefulness of additional diffusion MRI acquisition prior to mechanical thrombectomy for acute large vessel occlusion in the early time period at a CT-based stroke center. Clinical Neurology and Neurosurgery. 2023 Oct 1;233:107901.
- 30. Robitaille M, Émond M, Sharma M, Mackey A, Blanchard PG, Nemnom MJ, et al. The value of MRI in transient ischemic attack/minor stroke following a negative CT for predicting subsequent stroke. Canadian Journal of Emergency Medicine. 2025 Mar;27(3):215-20.
- 31. Lutsep HL, Albers GW, DeCrespigny A, Kamat GN, Marks MP, Moseley ME. Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1997 May;41(5):574-80.

- 32. González RG, Schaefer PW, Buonanno FS, Schwamm LH, Budzik RF, Rordorf G, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999 Jan;210(1):155-62.
- 33. Kauw F, Ding VY, Dankbaar JW, van Ommen F, Zhu G, Boothroyd DB, et al. Detection of early ischemic changes with virtual noncontrast dualenergy CT in acute ischemic stroke: a noninferiority analysis. American Journal of Neuroradiology. 2022 Sep 1;43(9):1259-64.
- 34. Czap AL, Sheth SA. Overview of imaging modalities in stroke. Neurology. 2021 Nov 16;97(20_Supplement_2):S42-51.
- 35. Hoving JW, Marquering HA, Majoie CB, Yassi N, Sharma G, Liebeskind DS, et al. Volumetric and spatial accuracy of computed tomography perfusion estimated ischemic core volume in patients with acute ischemic stroke. Stroke. 2018 Oct;49(10):2368-75.
- 36. Yu Y, Xie Y, Thamm T, Gong E, Ouyang J, Christensen S, et al. Tissue at risk and ischemic core estimation using deep learning in acute stroke. American Journal of Neuroradiology. 2021 Jun 1;42(6):1030-7.